Backdrop:
Our world is increasingly being battered by pressures such as the rapid development of technology, globalization, immigration and increasing inequality. We are facing multiple complex and interconnected problems within society and the environment. This is leading to disruption and uncertainty to life as we know it across multiple sectors, with the current coronavirus pandemic just one example. These disruptions are intricately linked to the underlying structures of our socio-economic systems and the ecological systems upon which they depend. These socio-ecological pressures and disruptions are reinforcing each other and exacerbating threats to life on planet earth.
Now more than ever, designers are being recognized for their fundamental role in addressing the urgent and connected global health crises we currently face: from climate change to social inequities to COVID-19. As creatives, we naturally navigate between the detail to the big picture, concept and vision to the final delivery. However:
"We cannot solve problems with the same kind of thinking that created them" - Albert Einstein
For dealing with the complexity and uncertainty that of complex contexts of interconnected social and ecological problems, a systems approach is needed to enhance the ability of the designer to design solutions that address the underlying drivers of the socio-ecological crises. This systems approach will empower students with the ability to rapidly learn and understand the complexity of the context to find the most effective places in the system to design interventions that are relevant to addressing the problems. The SOD methodology is applicable in any context and scale, from sustainable product design, better healthcare services, to policy design to sustainability transitions of communities and society at large.
This SOD fall masters course invites you to get on the dance floor and jointly explore and play with ideas that are rooted in systems thinking and design doing. Through hands on approaches and tools, you'll be able to take a systemic perspective to nurture your design practice to create things that are relevant to the complex world at different scales, from products to services to experiences to sustainability transitions of entire systems. If you are a curious person who likes to puzzle and have fun with exploring a context broadly and figure out what would be relevant to design to make systemic impacts, you have found the right course for you!
Read more on:
www.systemsorienteddesign.net
www.systemic-design.net
Structure of the course:
This course contains three modules
Module 1 (8 ETCS): Regenerative Systems Design (through immersion in Alpine-Urban reality) (4 weeks)
Module 2 (8 ETCS) Design for Governance Innovation (Democracy/Society/Wellbeing) (4 weeks)
Module 3 (8 ETCS) Design for Action (4 weeks)
Between each module there is a short period for reflection, digestion and self-programmed reading.
The content and microstructure of the course is somewhat dynamic and adaptive to possibly changing conditions.
Suitable for designers, architects, urbanists and landscape architects
The course content is suitable for all design topics including architecture, urbanism and landscape architecture and is open to students from all programmes at AHO. The course has two suggested main themes to choose between, but even self- programming your own focus is possible. The course is well suited as preparation for undertaking your diploma.
Module 1 – Regenerative Systems Design (through immersion in a real-world Alpine-Rural context)
The first module based partly in Hemsedal and partly in Oslo immediately exposes you into a real-life design context, where you will be introduced to SOD while being immersed in the local system of the Hemsedal mountain community, considering its complexities and connections to the urban systems. The time in Hemsedal is an opportunity for you to get outdoors and meet locals to help you understand what nature and societies can teach us about systems and designing better solutions for sustainable places and communities. It will also be a chance to get to know the other students and staff in an informal social but facilitated environment, which will be important to build a positive and engaged class culture with the people you will be spending the rest of the semester with.
Concretely we will dive into the local community, ecology and economy of the Hemsedal region, considering the social network of its communities, landscape use, and zooming into the different economic activities. Your tasks in this module will be to consider how to shift Hemsedal’s degenerative, vulnerable and linear economy to a more regenerative, resilient and circular economy that regenerates the community and ecology while building resilience to shocks at various system scales, and improves circularity of materials and waste.
We will consider various scales, from materials, products to communities, to regions while mapping system flows – such as tourists, materials, good and products, food, water, energy, waster, emissions, and money. We will also consider how the mountain systems are connected with urban systems. Mapping the current system flows, and together with insight from locals will help you identify innovation points at the various scales in mountain-urban system of Hemsedal.
Additionally, the module will expose you to various mindsets for considering complexity (such as systems thinking and ecological thinking) and world views and how they are connected to systems. The work will involve developing desirable future scenarios informed by sustainability science and the insight of locals. You will be facilitated to reflect critically on your role as a designer, and whose vision you are designing for. You will be exposed on the importance of moving beyond sustainability, which is focused on stopping damaging to address the socio-ecological crises with regeneration which is focusing on repairing the damages from socio-ecological impacts. You will practice various qualitative, quantitative and spatial mapping techniques (including gathering spatial data by drone flying) to develop gigamaps rich with qualitative, quantitative and spatial information. In this module we are taking the classroom outside the lecture hall and studio room, where will learn through outdoor, field activities and immersion in the context you are designing for.
Why the mountain context of Hemsedal for learning about SOD? Mountain regions are complex social-ecological systems, vulnerable to global environmental and economic changes, often dependent on single industry sectors like tourism, forestry, or mining. They are prime cases for us to consider how we can design a more resilient, regenerative communities, ecologies and economies. How to create circularity in mountain regions, with a more diversified, flexible, connected economy, where (winter) tourism is one pillar of a circular economy? We will consider and reflect on various topics and questions such as what is the role of the consumer, the local citizens, the tourist, the products we consume, the choices we make? How do product design, skis, mobility, local identity, and a circular economy in mountains correlate? How can designers design for circularity?
Module 2: Design for Governance Innovation (Democracy/Society/Wellbeing)
The second module, back at AHO, sees you pick a real project aligned with the either the theme options or their self-programmed project and facilitates students to deep dive into learning a systemic context and then designing solutions that address the problems and opportunities in their chosen context.
Amongst the context themes of this year, foci will be on how to transform societies at both local and global scales by orienting business and public sector to deliver on wellbeing through enhancing democracy (bottom-up influencing) and innovating governance systems (facilitating top-down structures). Further course foci may feed from Governance Innovation relating with Economic Governance and the implementation of a circular economy on a bio-regional scale, with Governance of the Commons with new flexible network governance systems, new knowledge systems, common resources governance through social circularity and real-world laboratory research, and systemic innovation for creating regenerative systems; and with Transboundary Governance, what governance supports joint innovation on the local-regional scale, and how seeds of systemic innovation can scale and create local people action.
Design for democracy is at the forefront of an international movement based on initiatives by Ezio Manzini and Victor Margolin. Design for democracy has a relatively long history starting with designing election situations. However, there has been a long development where democracy today is better understood in all its nuances. We have previously worked with participation (Tønsberg Municipality), workplace democracy (Gjensidige Forsikring and UDI), and involvement (Dagens Næringsliv). This year we will focus on finding ways to draw political and strategic discussions from being based on singular issues to focussing on holistic thinking. We will seek to cover both public and private fields in the choice of partners. Read more and see previous projects here:
Design for governance looks at our society from different perspectives: New Public Governance is a current trend that seeks to replace the heavily criticized and failing concept of New public Management. New Public Governance introduces a cooperative and networked form of policy development and governance that values a participatory public involvement and views citizens as co-producers of policies and public services. The course will explore democratic political processes and the combined use of political instruments through using SOD as an approach.
http://systemsorienteddesign.net/index.php/projects/design-for-democracy
Module 3 – Design for action - (Implementation in complex systems)
It is one thing to figure out your intervention concepts, it is another to implement these concepts into the complex reality. The challenges and complexities of implementation often substantially outweigh the efforts of developing your design.
Often implementation will also require the culture of systems (organisations, communities etc) to change for the success of any solution. This module focuses on how to take your design from concept to reality utilising SOD and other approaches like Change Management, Transition Design and Action Research, or Real-World Laboratory research, to prototype, iterate and implement the concepts developed in module 2 while also considering other relevant initiatives already working and how to connect your concepts with these to increase the probability of successful implementation. In order to find the right action points for successful implementation, it is essential to understand which systems we want to change, who participates in this and the power dynamics going on. And then we need to sort out what counts as change, what changes count, by when does it count?
Learn how to use SOD methodology to take your designed interventions from concept to reality. Be exposed to various implementation models and tools for change, such as piloting, prototyping, action planning, change management, real world laboratories, seeds for systemic innovation and other implementation techniques. Learn how to implement your concept in various contexts, from economies to markets, from governments to organisations, considering the importance of network and alliance building, and how to connect projects together to amplify their collective impact. In all this work we claim that looking at SOD as processes to enhance the necessary silo bridging will be an important contribution to any implementation.
Meet relevant stakeholders and use your curiosity to understand the challenges in getting your concepts to work and then use these insights to improve your impact as a designer. Visualizing complexity will be an important tool in all these processes.
We will also examine the idea of first develop – then implement – and try to look into how these two phases might be wise to let overlap and look at “back testing” as part of the implementation. How can this both improve your concept at the same time help to speed up implementation?
Who should take this course?
This is the course for you if you wish
- Learn how to develop your own problem design brief(s) that are relevant for the real underlying problem(s) in your community or organisation to design solutions that are more effective at addressing the problem
- to take up a challenge to work with very complex problems,
- to develop the designers' abilities of holistic thinking,
- to have a strategic role in your future work as a designer, architect or urbanist.
- to combining multiple perspectives and diversified views, as well as conflicting interest, such as sustainability while maintaining profit, or navigating different beliefs, values and opinions be part of driving a transition to more sustainable societies
- to learn to design as nature: (1) with materials and products, and (2) on a systems level in organizational and economic transitions, such as governance, health or mobility
- to acquire methodological, contextual, technical, and social skills in circular regenerative design, i.e. life cycle analysis, engineering design with renewable materials, circularity indices, transitioning towards a tourism service economy, and alike
- to develop the designers' ability to integrate holistic thinking and circular design in a real-world contexts
- getting better at handling different perspectives, interests and values
This course is for you if you…
- are interested in developing a systemic perspective on design while driving the shift of society towards sustainability
- like to work with challenging topics that warrant critical thinking
- are willing to take in new knowledge and to read independently
- are good at taking initiative, self-organize, and seek guidance when needed
- are able to engage in critical discussion and actively participate throughout the course
- are interested in how to develop design briefs/problem statements to design solutions that are relevant to various system contexts in our world
If you feel that you do not meet these requirements you should think carefully, but if you are willing to improve in the above requirements then you are most welcome. If you are in doubt, don’t hesitate but contact birger.sevaldson@aho.no